Search results
Results from the WOW.Com Content Network
3 Example. 4 One-sided version. 5 Example. 6 Converse of the one-sided comparison test. 7 Example. 8 See also. 9 References. ... In mathematics, the limit comparison ...
1.6 Limit comparison test. 1.7 Cauchy condensation test. ... 2 Examples. 3 Convergence of products. 4 See ... is a sequence of real- or complex-valued functions ...
Comparison test can mean: Limit comparison test , a method of testing for the convergence of an infinite series. Direct comparison test , a way of deducing the convergence or divergence of an infinite series or an improper integral.
Abel's uniform convergence test is a criterion for the uniform convergence of a series of functions or an improper integration of functions dependent on parameters. It is related to Abel's test for the convergence of an ordinary series of real numbers, and the proof relies on the same technique of summation by parts. The test is as follows.
Subsequential limit – the limit of some subsequence; Limit of a function (see List of limits for a list of limits of common functions) One-sided limit – either of the two limits of functions of real variables x, as x approaches a point from above or below; Squeeze theorem – confirms the limit of a function via comparison with two other ...
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.