Search results
Results from the WOW.Com Content Network
Water vapor concentration for this gas mixture is 0.4%. Water vapor is a greenhouse gas in the Earth's atmosphere, responsible for 70% of the known absorption of incoming sunlight, particularly in the infrared region, and about 60% of the atmospheric absorption of thermal radiation by the Earth known as the greenhouse effect. [25]
The higher energy (shortest wavelength) ranges of UV (called "vacuum UV") are absorbed by nitrogen and, at longer wavelengths, by simple diatomic oxygen in the air. Most of the UV in the mid-range of energy is blocked by the ozone layer, which absorbs strongly in the important 200–315 nm range, the lower energy part of which is too long for ...
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]
Longer IR wavelengths (30–100 μm) are sometimes included as part of the terahertz radiation band. [4] Almost all black-body radiation from objects near room temperature is in the IR band. As a form of EMR, IR carries energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle ...
A clear daytime sky, looking toward the zenith. Earth's atmosphere scatters short-wavelength light more efficiently than that of longer wavelengths. Because its wavelengths are shorter, blue light is more strongly scattered than the longer-wavelength lights, red or green.
In geophysics, most atmospheric gases, including the greenhouse gases, allow the Sun's short-wavelength radiant energy to pass through to the Earth's surface, heating the ground and oceans. The absorbed solar energy is partly re-emitted as longer wavelength radiation (chiefly infrared radiation), some of which is absorbed by the atmospheric ...
Water vapor absorbing these wavelengths of IR energy is mainly attributed to water being a polar molecule. Water's polarity allows it to absorb and release radiation at far, near and mid-infrared wavelengths. [6] The polarity also largely impacts how water interacts with nature, for it allows complexes of water, such as the water dimer. [6]
Development of short and ultrashort laser pulses—created by Q switching and modelocking techniques—opened the way to the study of what became known as ultrafast processes. Applications for solid state research (e.g. Raman spectroscopy ) were found, and mechanical forces of light on matter were studied.