Search results
Results from the WOW.Com Content Network
A head shadow (or acoustic shadow) is a region of reduced amplitude of a sound because it is obstructed by the head. It is an example of diffraction. [1] [2]Sound may have to travel through and around the head in order to reach an ear.
Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree. [26] Diffraction can also be a concern in some technical applications; it sets a fundamental limit to the resolution of a camera, telescope, or microscope. Other examples of diffraction are considered below.
Diffusion, in architectural acoustics, is the spreading of sound energy evenly in a given environment. A perfectly diffusive sound space is one in which the reverberation time is the same at any listening position. Most interior spaces are non-diffusive; the reverberation time is considerably different around the room.
According to the principle of diffraction, when a wave front passes an obstruction, it spreads out into the shadowed space.A creeping wave in electromagnetism or acoustics is the wave that is diffracted around the shadowed surface of a smooth body such as a sphere.
Optical atmospheric diffraction; Radio wave diffraction is the scattering of radio frequency or lower frequencies from the Earth's ionosphere, resulting in the ability to achieve greater distance radio broadcasting. Sound wave diffraction is the bending of sound waves, as the sound travels around edges of geometric objects. This produces the ...
Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound (or sound in general) through an ultrasonic grating. A diffraction image showing the acousto-optic effect.
The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.
A sound wave propagates through a material as a localized pressure change. Increasing the pressure of a gas or fluid increases its local temperature. The local speed of sound in a compressible material increases with temperature; as a result, the wave travels faster during the high pressure phase of the oscillation than during the lower pressure phase.