Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
In the case of degenerate energy levels, we can write the partition function in terms of the contribution from energy levels (indexed by j) as follows: =, where g j is the degeneracy factor, or number of quantum states s that have the same energy level defined by E j = E s.
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Average kinetic energy per degree of freedom of a system: kelvin (K) Θ: intensive, scalar: Amount of substance: n: The quantity proportional to the number of particles in a sample, with the Avogadro constant as the proportionality constant: mole (mol) N: extensive, scalar Luminous intensity: I v: Wavelength-weighted power of emitted light per ...
The original Standard Model of particle physics from the 1970s contained 19 fundamental dimensionless constants describing the masses of the particles and the strengths of the electroweak and strong forces. In the 1990s, neutrinos were discovered to have nonzero mass, and a quantity called the vacuum angle was found to be indistinguishable from ...
Since the resulting equations need to be dimensionless, a suitable combination of parameters and constants of the equations and flow (domain) characteristics have to be found. As a result of this combination, the number of parameters to be analyzed is reduced and the results may be obtained in terms of the scaled variables.