Search results
Results from the WOW.Com Content Network
In his 1821 book Cours d'analyse, Augustin-Louis Cauchy discussed variable quantities, infinitesimals and limits, and defined continuity of = by saying that an infinitesimal change in x necessarily produces an infinitesimal change in y, while Grabiner claims that he used a rigorous epsilon-delta definition in proofs. [2]
Namely, the epsilon-delta definition of uniform continuity requires four quantifiers, while the infinitesimal definition requires only two quantifiers. It has the same quantifier complexity as the definition of uniform continuity in terms of sequences in standard calculus, which however is not expressible in the first-order language of the real ...
H. Jerome Keisler, David Tall, and other educators maintain that the use of infinitesimals is more intuitive and more easily grasped by students than the "epsilon–delta" approach to analytic concepts. [10] This approach can sometimes provide easier proofs of results than the corresponding epsilon–delta formulation of the proof.
This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions
The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces.
Date/Time Thumbnail Dimensions User Comment; current: 02:02, 12 January 2011: 1,102 × 828 (19 KB): Sabate: A bit better at low resolutions. 11:53, 11 January 2011
Limit of a function (ε,_δ)-definition of limit, formal definition of the mathematical notion of limit; Limit of a sequence; One-sided limit, either of the two limits of a function as a specified point is approached from below or from above; Limit inferior and limit superior; Limit of a net; Limit point, in topological spaces; Limit (category ...
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .