Search results
Results from the WOW.Com Content Network
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]
A Bjerrum plot is obtained by using these three equations to plot these three species against pH = −log 10 [H +] eq, for given K 1, K 2 and DIC. The fractions in these equations give the three species' relative proportions, and so if DIC is unknown, or the actual concentrations are unimportant, these proportions may be plotted instead.
Given its greater H + concentration, the formula yields a lower pH value for the weak base. However, pH of bases is usually calculated in terms of the OH − concentration. This is done because the H + concentration is not a part of the reaction, whereas the OH − concentration is. The pOH is defined as:
The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [ 2 ] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [ 3 ]
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
pH = 1 / 2 pK w + 1 / 2 log (1 + T A / K a ) With a dilute solution of the weak acid, the term 1 + T A / K a is equal to T A / K a to a good approximation. If pK w = 14, pH = 7 + (pK a + log T A)/2. This equation explains the following facts: The pH at the end-point depends mainly on the strength of the ...