enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  3. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.

  4. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  5. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The ratio test and the root test are both based on comparison with a geometric series, and as such they work in similar situations. In fact, if the ratio test works (meaning that the limit ...

  6. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    For a power series f defined as: = = (),where a is a complex constant, the center of the disk of convergence,; c n is the n-th complex coefficient, and; z is a complex variable.; The radius of convergence r is a nonnegative real number or such that the series converges if

  7. Category:Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Category:Convergence_tests

    In mathematics, convergence tests are methods to determine if an infinite series converges or diverges. Pages in category "Convergence tests" The following 17 pages are in this category, out of 17 total.

  8. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    This convergence result is widely applied to prove the convergence of other series as well, whenever those series's terms can be bounded from above by a suitable geometric series; that proof strategy is the basis for the ratio test and root test for the convergence of infinite series. [11]

  9. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    Here the series definitely converges for a > 1, and diverges for a < 1. When a = 1, the condensation transformation gives the series (⁡). The logarithms "shift to the left". So when a = 1, we have convergence for b > 1, divergence for b < 1. When b = 1 the value of c enters.