Search results
Results from the WOW.Com Content Network
The table consisted of 26 unit fraction series of the form 1/n written as sums of other rational numbers. [9] The Akhmim wooden tablet wrote difficult fractions of the form 1/n (specifically, 1/3, 1/7, 1/10, 1/11 and 1/13) in terms of Eye of Horus fractions which were fractions of the form 1 / 2 k and remainders expressed in terms of a ...
Also bear in mind that the fraction 2/3 is the single exception, used in addition to integers, that Ahmes uses alongside all (positive) rational unit fractions to express Egyptian fractions. The 2/n table can be said to partially follow an algorithm (see problem 61B) for expressing 2/n as an Egyptian fraction of 2 terms, when n is composite.
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two , e.g. 1 / 8 = 1 / 2 3 .
The original mathematical texts never explain where the procedures and formulas came from. This holds true for the EMLR as well. Scholars have attempted to deduce what techniques the ancient Egyptians may have used to construct both the unit fraction tables of the EMLR and the 2/n tables known from the Rhind Mathematical Papyrus and the Lahun Mathematical Papyri.
In mathematics education, unit fractions are often introduced earlier than other kinds of fractions, because of the ease of explaining them visually as equal parts of a whole. [ 22 ] [ 23 ] A common practical use of unit fractions is to divide food equally among a number of people, and exercises in performing this sort of fair division are a ...
The first edition was published in 1928. [4] Subsequent editions are: [5] Mathematical Tables from Handbook of Chemistry and Physics. 3rd edition (1933) 4th edition (1934) 5th edition (1936) 6th edition (1938) 7th edition (1941) 8th edition (1946, 1947) 9th edition (1952) CRC Standard Mathematical Tables. 10th edition (1956) 11th edition (1957 ...
Over the ensuing 16 years Padé published 28 additional papers exploring the properties of his table, and relating the table to analytic continued fractions. [1] Modern interest in Padé tables was revived by H. S. Wall and Oskar Perron, who were primarily interested in the connections between the tables and certain classes of continued fractions.
The Rhind Mathematical Papyrus reports an odd n table up to 101. [18] These fraction tables were related to multiplication problems and the use of unit fractions, namely n/p scaled by LCM m to mn/mp. With the exception of 2/3, all fractions were represented as sums of unit fractions (i.e. of the form 1/n), first in red numbers. Multiplication ...