Search results
Results from the WOW.Com Content Network
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution [1]) is an exact sequence of modules (or, more generally, of objects of an abelian category) that is used to define invariants characterizing the structure of a specific module or object of this category.
n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...
[18] [19] Today, the degree, 1 / 360 of a turn, or the mathematically more convenient radian, 1 / 2 π of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions . [ 23 ]
Resolution and resolving power, when defined in this way, are consistent with IUPAC recommendations for microscopy, optical spectroscopy. [16] [17] and ion microscopy (SIMS) [18] but not gas chromatography. [13] This definition also appears in some mass spectrometry texts. [19] [20] [21]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic , quartic , Eisenstein , and related higher [ 1 ] reciprocity laws .
Resolving power is the capacity of an instrument to resolve two points which are close together. Specifically, resolving power may refer to: Angular resolution
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n . Fifth powers are also formed by multiplying a number by its fourth power , or the square of a number by its cube .