enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The log-likelihood of a normal variable is simply the log of its probability density function: ⁡ = ⁡ (). Since this is a scaled and shifted square of a standard normal variable, it is distributed as a scaled and shifted chi-squared variable.

  4. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Since the log likelihood of a normal vector is a quadratic ... Tables of critical values for both ... Rice distribution, the pdf of the vector length of a ...

  5. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    Log probabilities make some mathematical manipulations easier to perform. Optimization. Since most common probability distributions —notably the exponential family —are only logarithmically concave , [ 2 ] [ 3 ] and concavity of the objective function plays a key role in the maximization of a function such as probability, optimizers work ...

  6. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The log-logistic distribution; The log-metalog distribution, which is highly shape-flexile, has simple closed forms, can be parameterized with data using linear least squares, and subsumes the log-logistic distribution as a special case. The log-normal distribution, describing variables which can be modelled as the product of many small ...

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The χ 2 distribution given by Wilks' theorem converts the region's log-likelihood differences into the "confidence" that the population's "true" parameter set lies inside. The art of choosing the fixed log-likelihood difference is to make the confidence acceptably high while keeping the region acceptably small (narrow range of estimates).

  8. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics.

  9. Logit-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Logit-normal_distribution

    In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.