Search results
Results from the WOW.Com Content Network
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.
The log-likelihood of a normal variable is simply the log of its probability density function: = (). Since this is a scaled and shifted square of a standard normal variable, it is distributed as a scaled and shifted chi-squared variable.
Since the log likelihood of a normal vector is a quadratic ... Tables of critical values for both ... Rice distribution, the pdf of the vector length of a ...
Log probabilities make some mathematical manipulations easier to perform. Optimization. Since most common probability distributions —notably the exponential family —are only logarithmically concave , [ 2 ] [ 3 ] and concavity of the objective function plays a key role in the maximization of a function such as probability, optimizers work ...
The log-logistic distribution; The log-metalog distribution, which is highly shape-flexile, has simple closed forms, can be parameterized with data using linear least squares, and subsumes the log-logistic distribution as a special case. The log-normal distribution, describing variables which can be modelled as the product of many small ...
The χ 2 distribution given by Wilks' theorem converts the region's log-likelihood differences into the "confidence" that the population's "true" parameter set lies inside. The art of choosing the fixed log-likelihood difference is to make the confidence acceptably high while keeping the region acceptably small (narrow range of estimates).
In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics.
In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.