Search results
Results from the WOW.Com Content Network
In mathematics, integrability is a property of certain dynamical systems.While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space.
Uniform integrability is an extension to the notion of a family of functions being dominated in which is central in dominated convergence. Several textbooks on real analysis and measure theory use the following definition: [1] [2] Definition A: Let (,,) be a positive measure space.
The Lebesgue–Vitali theorem does not imply that all type of discontinuities have the same weight on the obstruction that a real-valued bounded function be Riemann integrable on [a, b]. In fact, certain discontinuities have absolutely no role on the Riemann integrability of the function—a consequence of the classification of the ...
Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability. Real analysis is distinguished from complex analysis , which deals with the study of complex numbers and their functions.
Convergence of random variables, Convergence in mean; Monotone convergence theorem (does not require domination by an integrable function but assumes monotonicity of the sequence instead) Scheffé's lemma; Uniform integrability; Vitali convergence theorem (a generalization of Lebesgue's dominated convergence theorem)
Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886. [1] In the continuum description of a solid body we imagine the body to be composed of a set of infinitesimal volumes or material points.
There are no continuity assumptions on the functions α and u. The integral in Grönwall's inequality is allowed to give the value infinity. [clarification needed] If α is the zero function and u is non-negative, then Grönwall's inequality implies that u is the zero function. The integrability of u with respect to μ is
The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .