enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Manfredo do Carmo - Wikipedia

    en.wikipedia.org/wiki/Manfredo_do_Carmo

    Do Carmo's main research interests were Riemannian geometry and the differential geometry of surfaces. [3]In particular, he worked on rigidity and convexity of isometric immersions, [26] [27] stability of hypersurfaces [28] [29] and of minimal surfaces, [30] [31] topology of manifolds, [32] isoperimetric problems, [33] minimal submanifolds of a sphere, [34] [35] and manifolds of constant mean ...

  3. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  4. Isothermal coordinates - Wikipedia

    en.wikipedia.org/wiki/Isothermal_coordinates

    By contrast, most higher-dimensional manifolds do not admit isothermal coordinates anywhere; that is, they are not usually locally conformally flat. In dimension 3, a Riemannian metric is locally conformally flat if and only if its Cotton tensor vanishes.

  5. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    A surprising result of Carl Friedrich Gauss, known as the theorema egregium, showed that the Gaussian curvature of a surface, which by its definition has to do with how curves on the surface change directions in three dimensional space, can actually be measured by the lengths of curves lying on the surfaces together with the angles made when ...

  6. Fundamental theorem of Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo-Riemannian manifold) there is a unique affine connection that is torsion-free and metric-compatible, called the Levi-Civita connection or (pseudo-) Riemannian connection of the given metric.

  7. Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Bonnet_theorem

    do Carmo, Manfredo P. (2016). Differential geometry of curves & surfaces (Revised & updated second edition of 1976 original ed.). Mineola, NY: Dover Publications, Inc. ISBN 978-0-486-80699-0. MR 3837152. Zbl 1352.53002. Kobayashi, Shoshichi; Nomizu, Katsumi (1969). Foundations of differential geometry. Volume II. Interscience Tracts in Pure and ...

  8. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A tangent plane of the sphere with two vectors in it. A Riemannian metric allows one to take the inner product of these vectors. Let be a smooth manifold.For each point , there is an associated vector space called the tangent space of at .

  9. Beltrami's theorem - Wikipedia

    en.wikipedia.org/wiki/Beltrami's_theorem

    In the mathematical field of differential geometry, any (pseudo-)Riemannian metric determines a certain class of paths known as geodesics. Beltrami's theorem, named for Italian mathematician Eugenio Beltrami, is a result on the inverse problem of determining a (pseudo-)Riemannian metric from its geodesics.