enow.com Web Search

  1. Ad

    related to: differential geometry do carmo pdf book

Search results

  1. Results from the WOW.Com Content Network
  2. Manfredo do Carmo - Wikipedia

    en.wikipedia.org/wiki/Manfredo_do_Carmo

    Do Carmo's main research interests were Riemannian geometry and the differential geometry of surfaces. [3]In particular, he worked on rigidity and convexity of isometric immersions, [26] [27] stability of hypersurfaces [28] [29] and of minimal surfaces, [30] [31] topology of manifolds, [32] isoperimetric problems, [33] minimal submanifolds of a sphere, [34] [35] and manifolds of constant mean ...

  3. Mathematical Models (Fischer) - Wikipedia

    en.wikipedia.org/wiki/Mathematical_Models_(Fischer)

    Wire and plaster models illustrating the differential geometry and curvature of curves and surfaces, including surfaces of revolution, Dupin cyclides, helicoids, and minimal surfaces including the Enneper surface, with commentary by M. P. do Carmo, G. Fischer, U. Pinkall, H. and Reckziegel. [1] [3]

  4. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The differential geometry of surfaces revolves around the study of geodesics. It is still an open question whether every Riemannian metric on a 2-dimensional local chart arises from an embedding in 3-dimensional Euclidean space: the theory of geodesics has been used to show this is true in the important case when the components of the metric ...

  5. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.

  6. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  7. Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Bonnet_theorem

    In the mathematical field of differential geometry, the fundamental theorem of surface theory deals with the problem of prescribing the geometric data of a submanifold of Euclidean space. Originally proved by Pierre Ossian Bonnet in 1867, it has since been extended to higher dimensions and non-Euclidean contexts.

  8. Isothermal coordinates - Wikipedia

    en.wikipedia.org/wiki/Isothermal_coordinates

    In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form = (+ +),

  9. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.

  1. Ad

    related to: differential geometry do carmo pdf book