Search results
Results from the WOW.Com Content Network
Noncommutative algebra. v. t. e. Transcendental number theory is a branch of number theory that investigates transcendental numbers (numbers that are not solutions of any polynomial equation with rational coefficients), in both qualitative and quantitative ways.
However, in the form that is often used in number theory (namely, as an algorithm for finding integer solutions to an equation + =, or, what is the same, for finding the quantities whose existence is assured by the Chinese remainder theorem) it first appears in the works of Āryabhaṭa (5th–6th century CE) as an algorithm called kuṭṭaka ...
Pisot–Vijayaraghavan number. Salem number. Transcendental number. e (mathematical constant) pi, list of topics related to pi. Squaring the circle. Proof that e is irrational. Lindemann–Weierstrass theorem. Hilbert's seventh problem.
In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward ...
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers , finite fields , and function fields .
Wall–Sun–Sun prime. Waring–Goldbach problem. Waring's problem. Wieferich prime. Wilson prime. Wolstenholme prime. Woodall number. Categories: Unsolved problems in mathematics.
1938. Publisher. Clarendon Press. OCLC. 879664. An Introduction to the Theory of Numbers is a classic textbook in the field of number theory, by G. H. Hardy and E. M. Wright. The book grew out of a series of lectures by Hardy and Wright and was first published in 1938. The third edition added an elementary proof of the prime number theorem, and ...
known as the asymptotic law of distribution of prime numbers. Adrien-Marie Legendre conjectured in 1797 or 1798 that π (a) is approximated by the function a / (A ln (a) + B), where A and B are unspecified constants. In the second edition of his book on number theory (1808) he then made a more precise conjecture, with A = 1 and B ≈ −1.08366.