enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Time-derivatives of position. In physics, the fourth, fifth and sixth derivatives of position are defined as derivatives of the position vector with respect to time – with the first, second, and third derivatives being velocity, acceleration, and jerk, respectively. The higher-order derivatives are less common than the first three; [1][2 ...

  3. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 (SI units) or standard gravities per second (g0 /s).

  4. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  5. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  6. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    As a consequence of the law of gravitation and Kepler's third law, k is directly proportional to the square root of the standard gravitational parameter of the Sun, and its value in radians per day follows by setting Earth's semi-major axis (the astronomical unit, au) to unity, k:(rad/d) = (G M ☉) 0.5 ·au −1.5.

  7. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    This procedure does increase the number of equations to solve compared to Newton's laws, from 3N to 3N + C, because there are 3N coupled second-order differential equations in the position coordinates and multipliers, plus C constraint equations. However, when solved alongside the position coordinates of the particles, the multipliers can yield ...

  8. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    We see that in the Friedmann equations, a(t) does not depend on which coordinate system we chose for spatial slices. There are two commonly used choices for a and k which describe the same physics: k = +1, 0 or −1 depending on whether the shape of the universe is a closed 3-sphere, flat (Euclidean space) or an open 3-hyperboloid, respectively ...

  9. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The standard model is a quantum field theory, meaning its fundamental objects are quantum fields, which are defined at all points in spacetime. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles. These fields are.