enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert system - Wikipedia

    en.wikipedia.org/wiki/Hilbert_system

    In a Hilbert system, a formal deduction (or proof) is a finite sequence of formulas in which each formula is either an axiom or is obtained from previous formulas by a rule of inference. These formal deductions are meant to mirror natural-language proofs, although they are far more detailed.

  3. Hilbert's program - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_program

    As a solution, Hilbert proposed to ground all existing theories to a finite, complete set of axioms, and provide a proof that these axioms were consistent. Hilbert proposed that the consistency of more complicated systems, such as real analysis , could be proven in terms of simpler systems.

  4. List of axiomatic systems in logic - Wikipedia

    en.wikipedia.org/wiki/List_of_axiomatic_systems...

    Every logic system requires at least one non-nullary rule of inference. Classical propositional calculus typically uses the rule of modus ponens: ,. We assume this rule is included in all systems below unless stated otherwise. Frege's axiom system: [1] ()

  5. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system (usually formulated within model theory) that describes a set of sentences that is closed under logical implication. [1] A formal proof is a complete rendition of a mathematical proof within a formal system.

  6. Formal system - Wikipedia

    en.wikipedia.org/wiki/Formal_system

    A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms by a set of inference rules. [ 1 ] In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics .

  7. Hilbert's second problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_second_problem

    Hilbert's statement is sometimes misunderstood, because by the "arithmetical axioms" he did not mean a system equivalent to Peano arithmetic, but a stronger system with a second-order completeness axiom. The system Hilbert asked for a completeness proof of is more like second-order arithmetic than first-order Peano arithmetic.

  8. Hilbert's basis theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_basis_theorem

    Hilbert proved the theorem (for the special case of multivariate polynomials over a field) in the course of his proof of finite generation of rings of invariants. [1] The theorem is interpreted in algebraic geometry as follows: every algebraic set is the set of the common zeros of finitely many polynomials.

  9. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Following Gottlob Frege and Bertrand Russell, Hilbert sought to define mathematics logically using the method of formal systems, i.e., finitistic proofs from an agreed-upon set of axioms. [4] One of the main goals of Hilbert's program was a finitistic proof of the consistency of the axioms of arithmetic: that is his second problem. [a]