Search results
Results from the WOW.Com Content Network
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.
Volumetric flow rate is defined by the limit [3] = ˙ = =, that is, the flow of volume of fluid V through a surface per unit time t.. Since this is only the time derivative of volume, a scalar quantity, the volumetric flow rate is also a scalar quantity.
For example, according to the capacitance row of the table, if a capacitor has a capacitance of 1 F in SI, then it has a capacitance of (10 −9 c 2) cm in ESU; but it is incorrect to replace "1 F" with "(10 −9 c 2) cm" within an equation or formula. (This warning is a special aspect of electromagnetism units.
≡ Time of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom at 0 K [8] (but other seconds are sometimes used in astronomy). Also that time it takes for light to travel a distance of 299 792 458 metres. (SI base unit) shake: ≡ 10 −8 s = 10 ns ...
A barn (symbol: b) is a metric unit of area equal to 10 −28 m 2 (100 fm 2).This is equivalent to a square that is 10 −14 m (10 fm) each side, or a circle of diameter approximately 1.128 × 10 −14 m (11.28 fm).
For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system. The limit of the reduced mass formula as one mass goes to infinity is the smaller mass, thus this approximation is used to ease calculations, especially when the larger ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.