Search results
Results from the WOW.Com Content Network
It is defined as the ratio of the convection current to the dispersion current. The Bodenstein number is an element of the dispersion model of residence times and is therefore also called the dimensionless dispersion coefficient. [1] Mathematically, two idealized extreme cases exist for the Bodenstein number.
Taylor dispersion or Taylor diffusion is an apparent or effective diffusion of some scalar field arising on the large scale due to the presence of a strong, confined, zero-mean shear flow on the small scale. Essentially, the shear acts to smear out the concentration distribution in the direction of the flow, enhancing the rate at which it ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Hydrodynamic dispersion is then embedded in the advective-dispersive-reactive equation (ADRE) assuming a Fickian closure model. Dispersion is felt at the macroscale as responsible of a spread effect of the contaminant plume around its center of mass.
Dispersion can be differentiated from diffusion in that it is caused by non-ideal flow patterns [1] (i.e. deviations from plug flow) and is a macroscopic phenomenon, whereas diffusion is caused by random molecular motions (i.e. Brownian motion) and is a microscopic phenomenon.
In such a model the constant K in the above equation, that may also be called reaction factor, needs to be replaced by another symbol, say α (Alpha), to indicate the dependence of this factor on storage (S) and discharge (q). In the left figure the relation is quadratic: α = 0.0123 q 2 + 0.138 q - 0.112
Hydrodynamic dispersivity (α L, α T) is an empirical factor which quantifies how much contaminants stray away from the path of the groundwater which is carrying it. Some of the contaminants will be "behind" or "ahead" the mean groundwater, giving rise to a longitudinal dispersivity (α L ), and some will be "to the sides of" the pure ...
where L is the characteristic length, u the local flow velocity, D the mass diffusion coefficient, Re the Reynolds number, Sc the Schmidt number, Pr the Prandtl number, and α the thermal diffusivity, = where k is the thermal conductivity, ρ the density, and c p the specific heat capacity.