enow.com Web Search

  1. Ads

    related to: angles that are always congruent add 4 to 6 numbers and make
  2. education.com has been visited by 100K+ users in the past month

    It’s an amazing resource for teachers & homeschoolers - Teaching Mama

Search results

  1. Results from the WOW.Com Content Network
  2. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    With parallel lines, they are congruent. Alternate angles are the four pairs of angles that: have distinct vertex points, lie on opposite sides of the transversal and; both angles are interior or both angles are exterior. If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent.

  3. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distances and angles. The unchanged properties are called invariants. In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.

  4. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    v. t. e. A triangle immersed in a saddle-shape plane (a hyperbolic paraboloid), along with two diverging ultra-parallel lines. In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai – Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

  5. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Hilbert's axioms. Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book Grundlagen der Geometrie [1][2][3][4] (tr. The Foundations of Geometry) as the foundation for a modern treatment of Euclidean geometry. Other well-known modern axiomatizations of Euclidean geometry are those of Alfred Tarski and of ...

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Interior angle Δθ = θ 1 −θ 2. The Pythagorean theorem is a special case of the more general theorem relating the lengths of sides in any triangle, the law of cosines, which states that where is the angle between sides and . [45] When is radians or 90°, then , and the formula reduces to the usual Pythagorean theorem.

  7. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    A quadrilateral such as BCEF is called an adventitious quadrangle when the angles between its diagonals and sides are all rational angles, angles that give rational numbers when measured in degrees or other units for which the whole circle is a rational number. Numerous adventitious quadrangles beyond the one appearing in Langley's puzzle have ...

  8. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the ...

  9. Corresponding sides and corresponding angles - Wikipedia

    en.wikipedia.org/wiki/Corresponding_sides_and...

    In geometry, the tests for congruence and similarity involve comparing corresponding sides and corresponding angles of polygons. In these tests, each side and each angle in one polygon is paired with a side or angle in the second polygon, taking care to preserve the order of adjacency. [1] For example, if one polygon has sequential sides a, b ...

  1. Ads

    related to: angles that are always congruent add 4 to 6 numbers and make