Search results
Results from the WOW.Com Content Network
A group of hikers encountering quicksand on the banks of the Paria River, Utah Quicksand warning sign near Lower King Bridge, Western Australia. Quicksand is a shear thinning non-Newtonian fluid: when undisturbed, it often appears to be solid ("gel" form), but a less than 1% change in the stress on the quicksand will cause a sudden decrease in its viscosity ("sol" form).
Schematic representation of the overall perturbation of the global carbon cycle caused by anthropogenic activities, averaged from 2010 to 2019. [1] The atmospheric carbon cycle accounts for the exchange of gaseous carbon compounds, primarily carbon dioxide (CO 2), between Earth's atmosphere, the oceans, and the terrestrial biosphere.
In a given year between 10 and 100 million tonnes of carbon moves around this slow cycle. This includes volcanoes returning geologic carbon directly to the atmosphere in the form of carbon dioxide. However, this is less than one percent of the carbon dioxide put into the atmosphere by burning fossil fuels. [2] [32] [37]
Carbon is returned to the atmosphere via volcanic gases. Carbon undergoes transformation in the mantle under pressure to diamond and other minerals, and also exists in the Earth's outer core in solution with iron, and may also be present in the inner core. [1] Carbon can form a huge variety stable compounds.
In this layer ozone concentrations are about 2 to 8 parts per million, which is much higher than in the lower atmosphere but still very small compared to the main components of the atmosphere. It is mainly located in the lower portion of the stratosphere from about 15–35 km (9.3–21.7 mi; 49,000–115,000 ft), though the thickness varies ...
The atmosphere envelops the earth and extends hundreds of kilometres from the surface. It consists mostly of inert nitrogen (78%), oxygen (21%) and argon (0.9%). [4] Some trace gases in the atmosphere, such as water vapour and carbon dioxide, are the gases most important for the workings of the climate system, as they are greenhouse gases which allow visible light from the Sun to penetrate to ...
The majority of known chemical cycles on Venus involve its dense atmosphere and compounds of carbon and sulphur, the most significant being a strong carbon dioxide cycle. [3] The lack of a complete carbon cycle including a geochemical carbon cycle, for example, is thought to be a cause of its runaway greenhouse effect, due to the lack of a ...
The carbonate-silicate cycle is the primary control on carbon dioxide levels over long timescales. [3] It can be seen as a branch of the carbon cycle, which also includes the organic carbon cycle, in which biological processes convert carbon dioxide and water into organic matter and oxygen via photosynthesis. [5]