Search results
Results from the WOW.Com Content Network
The annotation, d a°C/b°C, indicates density of solution at temperature a divided by density of pure water at temperature b known as specific gravity. When temperature b is 4 °C, density of water is 0.999972 g/mL.
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Methanol is primarily converted to formaldehyde, which is widely used in many areas, especially polymers. The conversion entails oxidation: 2 CH 3 OH + O 2 → 2 CH 2 O + 2 H 2 O. Acetic acid can be produced from methanol. The Cativa process converts methanol into acetic acid. [35] Methanol and isobutene are combined to give methyl tert-butyl ...
Methanol-98 Liquid N 2: Cyclohexene-104 Liquid N 2: Isooctane-107 Liquid N 2: Ethyl iodide-109 Liquid N 2: Carbon disulfide-110 Liquid N 2: Butyl bromide-112 Liquid N 2: Ethanol-116 Liquid N 2: Ethyl bromide-119 Liquid N 2: Acetaldehyde-124 Liquid N 2: Methylcyclohexane-126 Liquid N 2: n-Propanol-127 Liquid N 2: n-Pentane-131 Liquid N 2: 1,5 ...
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous states) occur and coexist at equilibrium.
A DePriester Chart DePriester Charts provide an efficient method to find the vapor-liquid equilibrium ratios for different substances at different conditions of pressure and temperature. The original chart was put forth by C.L. DePriester in an article in Chemical Engineering Progress in 1953.