Search results
Results from the WOW.Com Content Network
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
[Functions that consume structured data] typically decompose their arguments into their immediate structural components and then process those components. If one of the immediate components belongs to the same class of data as the input, the function is recursive. For that reason, we refer to these functions as (STRUCTURALLY) RECURSIVE FUNCTIONS.
This mutually recursive definition can be converted to a singly recursive definition by inlining the definition of a forest: t: v [t[1], ..., t[k]] A tree t consists of a pair of a value v and a list of trees (its children). This definition is more compact, but somewhat messier: a tree consists of a pair of one type and a list another, which ...
But if this equals some primitive recursive function, there is an m such that h(n) = f(m,n) for all n, and then h(m) = f(m,m), leading to contradiction. However, the set of primitive recursive functions is not the largest recursively enumerable subset of the set of all total recursive functions. For example, the set of provably total functions ...
Mathematically, a set of mutually recursive functions are primitive recursive, which can be proven by course-of-values recursion, building a single function F that lists the values of the individual recursive function in order: = (), (), (), (), …, and rewriting the mutual recursion as a primitive recursion.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
A classic example of recursion is computing the factorial, which is defined recursively by 0! := 1 and n! := n × (n - 1)!.. To recursively compute its result on a given input, a recursive function calls (a copy of) itself with a different ("smaller" in some way) input and uses the result of this call to construct its result.
A list may contain the same value more than once, and each occurrence is considered a distinct item. A singly-linked list structure, implementing a list with three integer elements. The term list is also used for several concrete data structures that can be used to implement abstract lists, especially linked lists and arrays.