enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  3. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).

  4. Constant chord theorem - Wikipedia

    en.wikipedia.org/wiki/Constant_chord_theorem

    The constant chord theorem is a statement in elementary geometry about a property of certain chords in two intersecting circles. The circles k 1 {\displaystyle k_{1}} and k 2 {\displaystyle k_{2}} intersect in the points P {\displaystyle P} and Q {\displaystyle Q} .

  5. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.

  6. Inscribed angle - Wikipedia

    en.wikipedia.org/wiki/Inscribed_angle

    Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint. The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle subtending the same arc. The inscribed angle theorem appears as Proposition 20 in Book 3 of Euclid's Elements.

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    The chord theorem states that if two chords, CD and EB, intersect at A, then AC × AD = AB × AE. If two secants, AE and AD, also cut the circle at B and C respectively, then AC × AD = AB × AE (corollary of the chord theorem). A tangent can be considered a limiting case of a secant whose ends are coincident.

  8. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .

  9. Category:Theorems about circles - Wikipedia

    en.wikipedia.org/.../Category:Theorems_about_circles

    Pages in category "Theorems about circles" The following 21 pages are in this category, out of 21 total. ... Clifford's circle theorems; Constant chord theorem; D ...