enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The eigenvalues are real. The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The three eigenvectors are ordered ,, by their eigenvalues ; [50] then is the primary orientation/dip of clast, is the secondary and is the tertiary, in terms of strength. The clast orientation is defined as the direction of the eigenvector, on a compass rose of 360° .

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    It is used in all applications that involve approximating eigenvalues and eigenvectors, often under different names. In quantum mechanics , where a system of particles is described using a Hamiltonian , the Ritz method uses trial wave functions to approximate the ground state eigenfunction with the lowest energy.

  6. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    The eigenvalues and eigenvectors are ordered and paired. The jth eigenvalue corresponds to the jth eigenvector. Matrix V denotes the matrix of right eigenvectors (as opposed to left eigenvectors). In general, the matrix of right eigenvectors need not be the (conjugate) transpose of the matrix of left eigenvectors. Rearrange the eigenvectors and ...

  7. Matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Matrix_analysis

    In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...

  8. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    The surviving diagonal elements, ,, are known as eigenvalues and designated with in the defining equation, which reduces to =. The resulting equation is known as eigenvalue equation . [ 5 ] The eigenvectors and eigenvalues are derived from it via the characteristic polynomial .

  9. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum of its eigenvalues. [4] [5] [6] From this point of view, we can define the pseudo-determinant for a singular matrix to be the product of its nonzero eigenvalues (the density of multivariate normal distribution will need this ...