Search results
Results from the WOW.Com Content Network
In the context of GPS the most prominent correction introduced by general relativity is gravitational time dilation: the clocks located deeper in the gravitational potential well (i.e. closer to the attracting body) tick slower. Satellite clocks are slowed by their orbital speed but sped up by their distance out of the Earth's gravitational well.
Special and general relativity predicted that the clocks on GPS satellites, as observed by those on Earth, run 38 microseconds faster per day than those on the Earth. The design of GPS corrects for this difference; because without doing so, GPS calculated positions would accumulate errors of up to 10 kilometers per day (6 mi/d). [20]
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]
Gravitational time dilation was first described by Albert Einstein in 1907 [3] as a consequence of special relativity in accelerated frames of reference. In general relativity, it is considered to be a difference in the passage of proper time at different positions as described by a metric tensor of spacetime.
In the special case of an inertial observer in special relativity, by convention the coordinate time at an event is the same as the proper time measured by a clock that is at the same location as the event, that is stationary relative to the observer and that has been synchronised to the observer's clock using the Einstein synchronisation ...
In a 1964 article entitled Fourth Test of General Relativity, Irwin Shapiro wrote: [1] Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2 × 10 −4 sec when the radar pulses pass near the sun. Such a ...
The Michelson–Gale–Pearson experiment (1925) is a modified version of the Michelson–Morley experiment and the Sagnac-Interferometer.It measured the Sagnac effect due to Earth's rotation, and thus tests the theories of special relativity and luminiferous ether along the rotating frame of Earth.