Search results
Results from the WOW.Com Content Network
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.
In statistics and data mining, X-means clustering is a variation of k-means clustering that refines cluster assignments by repeatedly attempting subdivision, and keeping the best resulting splits, until a criterion such as the Akaike information criterion (AIC) or Bayesian information criterion (BIC) is reached.
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.
Eventually, objects converge to local maxima of density. Similar to k-means clustering, these "density attractors" can serve as representatives for the data set, but mean-shift can detect arbitrary-shaped clusters similar to DBSCAN. Due to the expensive iterative procedure and density estimation, mean-shift is usually slower than DBSCAN or k-Means.
Given a set of n objects, centroid-based algorithms create k partitions based on a dissimilarity function, such that k≤n. A major problem in applying this type of algorithm is determining the appropriate number of clusters for unlabeled data. Therefore, most research in clustering analysis has been focused on the automation of the process.
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
The k-medoids problem is a clustering problem similar to k-means. The name was coined by Leonard Kaufman and Peter J. Rousseeuw with their PAM (Partitioning Around Medoids) algorithm. [ 1 ] Both the k -means and k -medoids algorithms are partitional (breaking the dataset up into groups) and attempt to minimize the distance between points ...
Computer cluster, the technique of linking many computers together to act like a single computer; Data cluster, an allocation of contiguous storage in databases and file systems; Cluster analysis, the statistical task of grouping a set of objects in such a way that objects in the same group are placed closer together (such as the k-means ...