Search results
Results from the WOW.Com Content Network
[1] [2] [3] The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach ...
The word "dopplergraph" is a combination of the words doppler and photograph. Dopplergraphs are two-dimensional records of variations in the doppler shift in light intensity. Dopplergraphs do not need to be a record of the shift of visible light, but of any radiated wave, which includes electromagnetic waves and acoustic waves. [1]
Doppler shift with source moving at an arbitrary angle with respect to the line between source and receiver. The analysis used in section Relativistic longitudinal Doppler effect can be extended in a straightforward fashion to calculate the Doppler shift for the case where the inertial motions of the source and receiver are at any specified angle.
Doppler Effect: Change of wavelength and frequency caused by motion of the source. The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. [3] There is no need to invoke Albert Einstein's theory of special relativity, because all observations are made in the same frame of reference. [4]
The coherence time of the channel is related to a quantity known as the Doppler spread of the channel. When a user (or reflectors in its environment) is moving, the user's velocity causes a shift in the frequency of the signal transmitted along each signal path. This phenomenon is known as the Doppler shift. Signals traveling along different ...
This shift, which the free-falling observer considers to be a kinematical Doppler shift, is thought of by the laboratory observer as a gravitational redshift. Such an effect was verified in the 1959 Pound–Rebka experiment. In a case such as this, where the gravitational field is uniform, the change in wavelength is given by
A particular case is the thermal Doppler broadening due to the thermal motion of the particles. Then, the broadening depends only on the frequency of the spectral line, the mass of the emitting particles, and their temperature , and therefore can be used for inferring the temperature of an emitting (or absorbing) body being spectroscopically ...
In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.