Search results
Results from the WOW.Com Content Network
Each element is then analyzed individually to develop member stiffness equations. The forces and displacements are related through the element stiffness matrix which depends on the geometry and properties of the element. A truss element can only transmit forces in compression or tension.
The full stiffness matrix A is the sum of the element stiffness matrices. In particular, for basis functions that are only supported locally, the stiffness matrix is sparse. For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices.
The stiffness matrix is for only one pair of contact springs. However, the global stiffness matrix is determined by summing up the stiffness matrices of individual pairs of springs around each element. Consequently, the developed stiffness matrix has total effects from all pairs of springs, according to the stress situation around the element.
The assemblage of the various stiffness's into a master stiffness matrix that represents the entire structure leads to the system's stiffness or flexibility relation. To establish the stiffness (or flexibility) of a particular element, we can use the mechanics of materials approach for simple one-dimensional bar elements, and the elasticity ...
The origin of finite method can be traced to the matrix analysis of structures [1] [2] where the concept of a displacement or stiffness matrix approach was introduced. Finite element concepts were developed based on engineering methods in 1950s.
the Galerkin method of weighted residuals, the most common method of calculating the global stiffness matrix in the finite element method, [3] [4] the boundary element method for solving integral equations, Krylov subspace methods. [5]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.