enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The angular momentum of m is proportional to the perpendicular component v ⊥ of the velocity, or equivalently, to the perpendicular distance r ⊥ from the origin. Angular momentum is a vector quantity (more precisely, a pseudovector) that represents the product of a body's rotational inertia and rotational velocity (in radians/sec) about a ...

  3. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    A diagram of angular momentum. Showing angular velocity (Scalar) and radius. In physics, angular mechanics is a field of mechanics which studies rotational movement. It studies things such as angular momentum, angular velocity, and torque. It also studies more advanced things such as Coriolis force [1] and Angular aerodynamics.

  4. Balance of angular momentum - Wikipedia

    en.wikipedia.org/wiki/Balance_of_angular_momentum

    The balance of angular momentum or Euler's second law in classical mechanics is a law of physics, stating that to alter the angular momentum of a body a torque must be applied to it. An example of use is the playground merry-go-round in the picture. To put it in rotation it must be pushed.

  5. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The greater the angular momentum of the spinning object such as a top, the greater its tendency to continue to spin. The angular momentum of a rotating body is proportional to its mass and to how rapidly it is turning. In addition, the angular momentum depends on how the mass is distributed relative to the axis of rotation: the further away the ...

  6. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  7. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    In simpler terms, the total angular momentum operator characterizes how a quantum system is changed when it is rotated. The relationship between angular momentum operators and rotation operators is the same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below. The different types of rotation ...

  8. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    Accordingly, the change of the angular momentum is equal to the sum of the external moments. The variation of angular momentum ρ ⋅ Q ⋅ r ⋅ c u {\displaystyle \rho \cdot Q\cdot r\cdot c_{u}} at inlet and outlet, an external torque M {\displaystyle M} and friction moments due to shear stresses M τ {\displaystyle M_{\tau }} act on an ...

  9. Relativistic angular momentum - Wikipedia

    en.wikipedia.org/wiki/Relativistic_angular_momentum

    For reference and background, two closely related forms of angular momentum are given. In classical mechanics, the orbital angular momentum of a particle with instantaneous three-dimensional position vector x = (x, y, z) and momentum vector p = (p x, p y, p z), is defined as the axial vector = which has three components, that are systematically given by cyclic permutations of Cartesian ...