Ads
related to: hyperbolic geometry theorems and properties exampleskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Single lines in hyperbolic geometry have exactly the same properties as single straight lines in Euclidean geometry. For example, two points uniquely define a line, and line segments can be infinitely extended. Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry.
Algebraically, hyperbolic and spherical geometry have the same structure. [4] This allows us to apply concepts and theorems to one geometry to the other. [4] Applying hyperbolic geometry to spherical geometry can make it easier to understand because spheres are much more concrete, which then makes spherical geometry easier to conceptualize.
Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from being the case for hyperbolic manifolds). After the proof of the Geometrisation ...
The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane. By Lindemann–Weierstrass theorem , the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.
In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. [1] It can also be related to the relativistic velocity addition formula. [2] [3]
This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman. A perspective projection of a dodecahedral tessellation in H 3. This is an example of what an observer might see inside a hyperbolic 3-manifold. The Pseudosphere. Each half of this shape is a hyperbolic 2-manifold ...
The Mostow rigidity theorem implies that if a manifold of dimension at least 3 has a hyperbolic structure of finite volume, then it is essentially unique. The conditions that the manifold M should be irreducible and atoroidal are necessary, as hyperbolic manifolds have these properties. However the condition that the manifold be Haken is ...
In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).
Ads
related to: hyperbolic geometry theorems and properties exampleskutasoftware.com has been visited by 10K+ users in the past month