Search results
Results from the WOW.Com Content Network
def ternary_search (f, left, right, absolute_precision)-> float: """Find maximum of unimodal function f() within [left, right]. To find the minimum, reverse the if/else statement or reverse the comparison. """ while abs (right-left) >= absolute_precision: left_third = left + (right-left) / 3 right_third = right-(right-left) / 3 if f (left_third) < f (right_third): left = left_third else: right ...
Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs. The caller passes in the initial point.
Emo Welzl [8] proposed a simple randomized algorithm for the minimum covering circle problem that runs in expected time (), based on a linear programming algorithm of Raimund Seidel. Subsequently, the smallest-circle problem was included in a general class of LP-type problems that can be solved by algorithms like Welzl's based on linear ...
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
[1] [2] [3] Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no ...
It was first proposed in 1974 by Rastrigin [1] as a 2-dimensional function and has been generalized by Rudolph. [2] The generalized version was popularized by Hoffmeister & Bäck [3] and Mühlenbein et al. [4] Finding the minimum of this function is a fairly difficult problem due to its large search space and its large number of local minima.
The simplest version of the minhash scheme uses k different hash functions, where k is a fixed integer parameter, and represents each set S by the k values of h min (S) for these k functions. To estimate J ( A , B ) using this version of the scheme, let y be the number of hash functions for which h min ( A ) = h min ( B ) , and use y / k as the ...