Search results
Results from the WOW.Com Content Network
The rule states that with the addition of a protic acid HX or other polar reagent to an asymmetric alkene, the acid hydrogen (H) or electropositive part gets attached to the carbon with more hydrogen substituents, and the halide (X) group or electronegative part gets attached to the carbon with more alkyl substituents. This is in contrast to ...
The Shi epoxidation is a chemical reaction described as the asymmetric epoxidation of alkenes with oxone (potassium peroxymonosulfate) and a fructose-derived catalyst (1). This reaction is thought to proceed via a dioxirane intermediate, generated from the catalyst ketone by oxone (potassium peroxymonosulfate).
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric ( enantiomeric or diastereomeric ) products in unequal ...
K. Barry Sharpless was the first to develop a general, reliable enantioselective alkene dihydroxylation, referred to as the Sharpless asymmetric dihydroxylation (SAD). Low levels of OsO 4 are combined with a stoichiometric ferricyanide oxidant in the presence of chiral nitrogenous ligands to create an asymmetric environment around the oxidant.
Asymmetric epoxidation is often feasible. [4] One named reaction is the Jacobsen epoxidation, which uses manganese-salen complex as a chiral catalyst and NaOCl as the oxidant. The Sharpless epoxidation using chiral N-heterocyclic ligands and osmium tetroxide. Instead of asymmetric epoxidation, alkenes are susceptible to asymmetric dihydroxylation.
It is used as an asymmetric catalyst in the Jacobsen epoxidation, which is renowned for its ability to enantioselectively transform prochiral alkenes into epoxides. [ 1 ] [ 2 ] Before its development, catalysts for the asymmetric epoxidation of alkenes required the substrate to have a directing functional group, such as an alcohol as seen in ...
The simplest alkene, ethylene (C 2 H 4) (or "ethene" in the IUPAC nomenclature) is the organic compound produced on the largest scale industrially. [5] Aromatic compounds are often drawn as cyclic alkenes, however their structure and properties are sufficiently distinct that they are not classified as alkenes or olefins. [3]
About a decade later, Jurkauskas and Buchwald also utilized dynamic kinetic resolution towards the hydrogenation of conjugated systems. [8] 1,4 addition to cyclic enones is quite common in many reaction schemes, however asymmetric reductions in the presence of an easily epimerizable center adds to the complexity when trying to modify only one center.