Search results
Results from the WOW.Com Content Network
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation.
Calculating the interpolating polynomial is computationally expensive (see computational complexity) compared to linear interpolation. Furthermore, polynomial interpolation may exhibit oscillatory artifacts, especially at the end points (see Runge's phenomenon). Polynomial interpolation can estimate local maxima and minima that are outside the ...
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]
In the mathematical study of polynomial splines the question of what happens when two knots, say t i and t i+1, are taken to approach one another and become coincident has an easy answer. The polynomial piece P i (t) disappears, and the pieces P i−1 (t) and P i+1 (t) join with the sum of the smoothness losses for t i and t i+1.
The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial and the function. In this case, the form of the solution is precised by the equioscillation theorem .