enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. LN-3 inertial navigation system - Wikipedia

    en.wikipedia.org/wiki/LN-3_Inertial_Navigation...

    The LN-3-2B is the Inertial Navigation System used in the Canadian CF-104. [12] The LN-3-13 is fitted to the Italian F-104S/CI and F-104S/CB; [13] enhanced variants of the F-104G from 1969 and onward. In the early 1980s a further upgrade led to the F-104S ASA version which kept the original LN-3; but the ASA-M version of the '90s was equipped ...

  3. Piezoelectric accelerometer - Wikipedia

    en.wikipedia.org/wiki/Piezoelectric_accelerometer

    Directly below the accelerometer's geometry is a flex cavity that allows the mass in the cavity to flex or move in direction that is orthogonal to the surface of the accelerometer. Accelerometers based upon piezoelectricity are constructed with two piezoelectric transducers.

  4. Inertial navigation system - Wikipedia

    en.wikipedia.org/wiki/Inertial_navigation_system

    Inertial measurement units (IMUs) typically contain three orthogonal rate-gyroscopes and three orthogonal accelerometers, measuring angular velocity and linear acceleration respectively. By processing signals from these devices it is possible to track the position and orientation of a device.

  5. Inertial measurement unit - Wikipedia

    en.wikipedia.org/wiki/Inertial_measurement_unit

    An inertial measurement unit works by detecting linear acceleration using one or more accelerometers and rotational rate using one or more gyroscopes. [3] Some also include a magnetometer which is commonly used as a heading reference. Some IMUs, like Adafruit's 9-DOF IMU, include additional sensors like temperature. [4]

  6. Laser accelerometer - Wikipedia

    en.wikipedia.org/wiki/Laser_accelerometer

    An accelerometer was announced that used infrared light to measure the change in distance between two micromirrors in a Fabry–Perot cavity. The proof mass is a single silicon crystal with a mass of 10–20 mg, suspended from the first mirror using flexible 1.5 μm-thick silicon nitride (Si 3 N 4) beams. The suspension allows the proof mass to ...

  7. PIGA accelerometer - Wikipedia

    en.wikipedia.org/wiki/PIGA_accelerometer

    The PIGA was based on an accelerometer developed by Dr. Fritz Mueller, then of the Kreiselgeraete Company, for the LEV-3 and experimental SG-66 guidance system of the Nazi era German V2 (EMW A4) ballistic missile and was known among the German rocket scientists as the MMIA "Mueller Mechanical Integrating Accelerometer". This system used ...

  8. Gyroscope - Wikipedia

    en.wikipedia.org/wiki/Gyroscope

    By determining an object's acceleration and integrating over time, the velocity of the object can be calculated. Integrating again, position can be determined. The simplest accelerometer is a weight that is free to move horizontally, which is attached to a spring and a device to measure the tension in the spring.

  9. Accelerometer - Wikipedia

    en.wikipedia.org/wiki/Accelerometer

    An accelerometer measures proper acceleration, which is the acceleration it experiences relative to freefall and is the acceleration felt by people and objects. [2] Put another way, at any point in spacetime the equivalence principle guarantees the existence of a local inertial frame, and an accelerometer measures the acceleration relative to that frame. [4]