enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  3. Deconvolution - Wikipedia

    en.wikipedia.org/wiki/Deconvolution

    In mathematics, deconvolution is the inverse of convolution. Both operations are used in signal processing and image processing. For example, it may be possible to recover the original signal after a filter (convolution) by using a deconvolution method with a certain degree of accuracy. [1]

  4. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution and related operations are found in many applications in science, engineering and mathematics. Convolutional neural networks apply multiple cascaded convolution kernels with applications in machine vision and artificial intelligence. [36] [37] Though these are actually cross-correlations rather than convolutions in most cases. [38]

  5. Gabor filter - Wikipedia

    en.wikipedia.org/wiki/Gabor_filter

    Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...

  6. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    2D Convolution Animation. Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel. This is related to a form of mathematical convolution. The matrix operation being performed—convolution—is not traditional matrix multiplication, despite being similarly denoted by *.

  7. Richardson–Lucy deconvolution - Wikipedia

    en.wikipedia.org/wiki/Richardson–Lucy...

    The use of Richardson–Lucy deconvolution to recover a signal blurred by an impulse response function. The Richardson–Lucy algorithm, also known as Lucy–Richardson deconvolution, is an iterative procedure for recovering an underlying image that has been blurred by a known point spread function.

  8. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  9. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.