enow.com Web Search

  1. Ad

    related to: what is the multiplicative inverse of zero in algebra 2 answers key grade 9

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the ...

  3. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    The inverse or multiplicative inverse (for avoiding confusion with additive inverses) of a unit x is denoted , or, when the multiplication is commutative, . The additive identity 0 is never a unit, except when the ring is the zero ring , which has 0 as its unique element.

  4. Rng (algebra) - Wikipedia

    en.wikipedia.org/wiki/Rng_(algebra)

    A rng of square zero is a rng R such that xy = 0 for all x and y in R. [4] Any abelian group can be made a rng of square zero by defining the multiplication so that xy = 0 for all x and y; [5] thus every abelian group is the additive group of some rng. The only rng of square zero with a multiplicative identity is the zero ring {0}. [5]

  5. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    Books on commutative algebra or algebraic geometry often adopt the convention that ring means commutative ring, to simplify terminology. In a ring, multiplicative inverses are not required to exist. A nonzero commutative ring in which every nonzero element has a multiplicative inverse is called a field.

  6. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    In algebra, a unit or invertible element [a] of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that = =, where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u.

  7. Division ring - Wikipedia

    en.wikipedia.org/wiki/Division_ring

    In algebra, a division ring, also called a skew field (or, occasionally, a sfield [1] [2]), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring [3] in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a –1, such that a a –1 = a –1 a = 1.

  8. Division algebra - Wikipedia

    en.wikipedia.org/wiki/Division_algebra

    These are of course both associative. For a non-associative example, consider the complex numbers with multiplication defined by taking the complex conjugate of the usual multiplication: = ¯. This is a commutative, non-associative division algebra of dimension 2 over the reals, and has no unit element. There are infinitely many other non ...

  9. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    But in the ring Z/6Z, 2 is a zero divisor. This equation has two distinct solutions, x = 1 and x = 4, so the expression is undefined. In field theory, the expression is only shorthand for the formal expression ab −1, where b −1 is the multiplicative inverse of b.

  1. Ad

    related to: what is the multiplicative inverse of zero in algebra 2 answers key grade 9