enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".

  3. Package-merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Package-merge_algorithm

    However, the original paper, "A fast algorithm for optimal length-limited Huffman codes", shows how this can be improved to O(nL)-time and O(n)-space. The idea is to run the algorithm a first time, only keeping enough data to be able to determine two equivalent subproblems that sum to half the size of the original problem.

  4. Modified Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Modified_Huffman_coding

    Modified Huffman coding is used in fax machines to encode black-on-white images . It combines the variable-length codes of Huffman coding with the coding of repetitive data in run-length encoding . The basic Huffman coding provides a way to compress files with much repeating data, like a file containing text, where the alphabet letters are the ...

  5. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    The normal Huffman coding algorithm assigns a variable length code to every symbol in the alphabet. More frequently used symbols will be assigned a shorter code. For example, suppose we have the following non-canonical codebook: A = 11 B = 0 C = 101 D = 100 Here the letter A has been assigned 2 bits, B has 1 bit, and C and D both have 3 bits.

  6. Arithmetic coding - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_coding

    When naively Huffman coding binary strings, no compression is possible, even if entropy is low (e.g. ({0, 1}) has probabilities {0.95, 0.05}). Huffman encoding assigns 1 bit to each value, resulting in a code of the same length as the input. By contrast, arithmetic coding compresses bits well, approaching the optimal compression ratio of

  7. Deflate - Wikipedia

    en.wikipedia.org/wiki/DEFLATE

    Instructions to generate the necessary Huffman tree immediately follow the block header. The static Huffman option is used for short messages, where the fixed saving gained by omitting the tree outweighs the percentage compression loss due to using a non-optimal (thus, not technically Huffman) code. Compression is achieved through two steps:

  8. Adaptive Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Huffman_coding

    Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.

  9. Group 4 compression - Wikipedia

    en.wikipedia.org/wiki/Group_4_compression

    Group 4 compression is based on the Group 3 two-dimensional compression scheme (G3-2D), also known as Modified READ, which is in turn based on the Group 3 one-dimensional compression scheme (G3), also known as Modified Huffman coding. Group 4 compression is available in many proprietary image file formats as well as standardized formats such as ...