Search results
Results from the WOW.Com Content Network
PKCS #8 is one of the family of standards called Public-Key Cryptography Standards (PKCS) created by RSA Laboratories. The latest version, 1.2, is available as RFC 5208. [1] The PKCS #8 private key may be encrypted with a passphrase using one of the PKCS #5 standards defined in RFC 2898, [2] which supports multiple encryption schemes.
G (key-generator) gives the key k on input 1 n, where n is the security parameter. S (signing) outputs a tag t on the key k and the input string x. V (verifying) outputs accepted or rejected on inputs: the key k, the string x and the tag t. S and V must satisfy the following: Pr [ k ← G(1 n), V( k, x, S(k, x) ) = accepted] = 1. [5]
Symmetric-key algorithms use a single shared key; keeping data secret requires keeping this key secret. Public-key algorithms use a public key and a private key. The public key is made available to anyone (often by means of a digital certificate). A sender encrypts data with the receiver's public key; only the holder of the private key can ...
X.509 public key certificates, X.509 CRLs In cryptography , PKCS #7 ("PKCS #7: Cryptographic Message Syntax", "CMS") is a standard syntax for storing signed and/or encrypted data. PKCS #7 is one of the family of standards called Public-Key Cryptography Standards ( PKCS ) created by RSA Laboratories .
One brief comment in the text mentions, but does not mandate, the possibility of simply using the ASCII encoded value of a character string: "Finally, the key argument is a secret encryption key, which can be a user-chosen password of up to 56 bytes (including a terminating zero byte when the key is an ASCII string)." [1]
The first iteration of PRF uses Password as the PRF key and Salt concatenated with i encoded as a big-endian 32-bit integer as the input. (Note that i is a 1-based index.) Subsequent iterations of PRF use Password as the PRF key and the output of the previous PRF computation as the input: F(Password, Salt, c, i) = U 1 ^ U 2 ^ ⋯ ^ U c. where:
The decoded challenge is hashed using HMAC-MD5, with a shared secret (typically, the user's password, or a hash thereof) as the secret key. The hashed challenge is converted to a string of lowercase hex digits. The username and a space character are prepended to the hex digits. The concatenation is then base64-encoded and sent to the server
Sending a secret message from Alice to Bob requires the generation of a public and a private key. The public key is known by both Alice and Bob and the private key is only known by Bob. To generate the key pair two polynomials f and g , with degree at most N − 1 {\displaystyle \ N-1} and with coefficients in {-1,0,1} are required.