Search results
Results from the WOW.Com Content Network
Some chips implement long multiplication, in hardware or in microcode, for various integer and floating-point word sizes. In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying
Compared to traditional long multiplication, the grid method differs in clearly breaking the multiplication and addition into two steps, and in being less dependent on place value. Whilst less efficient than the traditional method, grid multiplication is considered to be more reliable, in that children are less likely to make mistakes. Most ...
Using the multiplication tables embedded in the rods, multiplication can be reduced to addition operations and division to subtractions. Advanced use of the rods can extract square roots. Napier's bones are not the same as logarithms, with which Napier's name is also associated, but are based on dissected multiplication tables.
The lattice technique can also be used to multiply decimal fractions. For example, to multiply 5.8 by 2.13, the process is the same as to multiply 58 by 213 as described in the preceding section. To find the position of the decimal point in the final answer, one can draw a vertical line from the decimal point in 5.8, and a horizontal line from ...
The Chisanbop system. When a finger is touching the table, it contributes its corresponding number to a total. Chisanbop or chisenbop (from Korean chi (ji) finger + sanpŏp (sanbeop) calculation [1] 지산법/指算法), sometimes called Fingermath, [2] is a finger counting method used to perform basic mathematical operations.
The method for general multiplication is a method to achieve multiplications with low space complexity, i.e. as few temporary results as possible to be kept in memory. This is achieved by noting that the final digit is completely determined by multiplying the last digit of the multiplicands. This is held as a temporary result.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
To multiply by numbers over 9: The multiplicand is set into the operand dials. The first (least significant) digit of the multiplier is set into the multiplier dial as above, and the crank is turned, multiplying the operand by that digit and putting the result in the accumulator. The input section is shifted one digit to the left with the end ...