enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).

  3. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The corresponding expression for the ratio of specific heat capacities remains the same since the thermodynamic system size-dependent quantities, whether on a per mass or per mole basis, cancel out in the ratio because specific heat capacities are intensive properties. Thus:

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Molar specific heat capacity (isochoric) C nV = / J⋅K⋅ −1 mol −1: ML 2 T −2 Θ −1 N −1: Specific latent heat: L = / J⋅kg −1: L 2 T −2: Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient

  5. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...

  6. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure. It is a useful thermodynamic property for modifying the ideal gas law to account for the real gas behaviour. [ 1 ]

  7. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    γ 0 is the heat capacity ratio (⁠ 5 / 3 ⁠ for monatomic gases such as argon); T is the temperature, T TPW = 273.16 K by the definition of the kelvin at that time; A r (Ar) is the relative atomic mass of argon and M u = 10 −3 kg⋅mol −1 as defined at the time.

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    (Note - the relation between pressure, volume, temperature, and particle number which is commonly called "the equation of state" is just one of many possible equations of state.) If we know all k+2 of the above equations of state, we may reconstitute the fundamental equation and recover all thermodynamic properties of the system.

  9. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    These effects usually combine to give heat capacities lower than 3R per mole of atoms in the solid, although in molecular solids, heat capacities calculated per mole of molecules in molecular solids may be more than 3R. For example, the heat capacity of water ice at the melting point is about 4.6R per mole of molecules, but only 1.5R per mole ...