Search results
Results from the WOW.Com Content Network
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.
This is a basic statement because the inert mass and the gravitational mass can both be measured separately, even though it never happens that they are different. It is, as described by Popper, a valid falsifier for Einstein's equivalence principle. [AC]
According to the principle of nuclear equivalence, the nuclei of essentially all differentiated adult cells of an individual are genetically ...
The Eötvös experiment was a physics experiment that measured the correlation between inertial mass and gravitational mass, demonstrating that the two were one and the same, something that had long been suspected but never demonstrated with the same accuracy.
The objective of the Gravity Probe A experiment was to test the validity of the equivalence principle. The equivalence principle is a key component of Albert Einstein's theory of general relativity, and states that the laws of physics are the same in an accelerating reference frame as they are in a reference frame that is acted upon by a uniform gravitational field.
Principle of equivalence may refer to: The relativistic equivalence principle; Carl Jung's second principle relating to the libido#Analytical psychology; The principle of nuclear equivalence, in genetics; Wolfram's principle of computational equivalence, discussed in A New Kind of Science
A diagram of DNA base pairing, demonstrating the basis for Chargaff's rules. Chargaff's rules (given by Erwin Chargaff) state that in the DNA of any species and any organism, the amount of guanine should be equal to the amount of cytosine and the amount of adenine should be equal to the amount of thymine.
The principle is named after G. H. Hardy and Wilhelm Weinberg, who first demonstrated it mathematically. Hardy's paper was focused on debunking the view that a dominant allele would automatically tend to increase in frequency (a view possibly based on a misinterpreted question at a lecture [ 1 ] ).