enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magma (computer algebra system) - Wikipedia

    en.wikipedia.org/wiki/Magma_(computer_algebra...

    Magma Free Online Calculator; Magma's High Performance for computing Gröbner Bases (2004) Magma's High Performance for computing Hermite Normal Forms of integer matrices; Magma V2.12 is apparently "Overall Best in the World at Polynomial GCD" :-) Magma example code; Liste von Publikationen, die Magma zitieren

  3. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  4. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.

  5. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder).

  6. Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Zassenhaus_algorithm

    In mathematics, the Zassenhaus algorithm [1] is a method to calculate a basis for the intersection and sum of two subspaces of a vector space. It is named after Hans Zassenhaus, but no publication of this algorithm by him is known. [2] It is used in computer algebra systems. [3]

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  8. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    #!/usr/bin/env python3 import numpy as np def power_iteration (A, num_iterations: int): # Ideally choose a random vector # To decrease the chance that our vector # Is orthogonal to the eigenvector b_k = np. random. rand (A. shape [1]) for _ in range (num_iterations): # calculate the matrix-by-vector product Ab b_k1 = np. dot (A, b_k) # calculate the norm b_k1_norm = np. linalg. norm (b_k1 ...

  9. Cannon's algorithm - Wikipedia

    en.wikipedia.org/wiki/Cannon's_algorithm

    In the first step we distribute the input matrices between the processors based on the previous rule. In the next iterations we choose a new k' := (k + 1) mod n for every processor. This way every processor will continue accessing different values of the matrices. The needed data is then always at the neighbour processors.