Search results
Results from the WOW.Com Content Network
A body is said to be "free" when it is singled out from other bodies for the purposes of dynamic or static analysis. The object does not have to be "free" in the sense of being unforced, and it may or may not be in a state of equilibrium; rather, it is not fixed in place and is thus "free" to move in response to forces and torques it may experience.
Hertz solved the contact problem in the absence of friction, for a simple geometry (curved surfaces with constant radii of curvature). Carter considered the rolling contact between a cylinder and a plane, as described above. A complete analytical solution is provided for the tangential traction.
The first nine blocks in the solution to the single-wide block-stacking problem with the overhangs indicated. In statics, the block-stacking problem (sometimes known as The Leaning Tower of Lire (Johnson 1955), also the book-stacking problem, or a number of other similar terms) is a puzzle concerning the stacking of blocks at the edge of a table.
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
With respect to a coordinate frame whose origin coincides with the body's center of mass for τ() and an inertial frame of reference for F(), they can be expressed in matrix form as:
The n-body problem is an ancient, classical problem [19] of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. Solving this problem – from the time of the Greeks and on – has been motivated by the desire to understand the motions of the Sun, planets and the visible stars.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The equation used to model belt friction is, assuming the belt has no mass and its material is a fixed composition: [2] = where is the tension of the pulling side, is the tension of the resisting side, is the static friction coefficient, which has no units, and is the angle, in radians, formed by the first and last spots the belt touches the pulley, with the vertex at the center of the pulley.