Ad
related to: tensor notation examples in math geometry calculator
Search results
Results from the WOW.Com Content Network
In mathematics, a tensor is a certain kind of geometrical entity and array concept. It generalizes the concepts of scalar, vector and linear operator, in a way that is independent of any chosen frame of reference. For example, doing rotations over axis does not affect at all the properties of tensors, if a transformation law is followed.
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...
The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...
Tensor calculus has many applications in physics, engineering and computer science including elasticity, continuum mechanics, electromagnetism (see mathematical descriptions of the electromagnetic field), general relativity (see mathematics of general relativity), quantum field theory, and machine learning.
A (0,1) tensor is a covector. A (0,2) tensor is a bilinear form. An example is the metric tensor . A (1,1) tensor is a linear map. An example is the delta, , which is the identity map, or a Lorentz transformation .
A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):
For example, the Ricci tensor is a non-metric contraction of the Riemann curvature tensor, and the scalar curvature is the unique metric contraction of the Ricci tensor. One can also view contraction of a tensor field in the context of modules over an appropriate ring of functions on the manifold [ 5 ] or the context of sheaves of modules over ...
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
Ad
related to: tensor notation examples in math geometry calculator