enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In structural and mechanical engineering, the shear strength of a component is important for designing the dimensions and materials to be used for the manufacture or construction of the component (e.g. beams, plates, or bolts). In a reinforced concrete beam, the main purpose of reinforcing bar (rebar) stirrups is to increase the shear strength.

  3. Shear force - Wikipedia

    en.wikipedia.org/wiki/Shear_force

    The relevant information is the area of the material being sheared, i.e. the area across which the shearing action takes place, and the shear strength of the material. A round bar of steel is used as an example. The shear strength is calculated from the tensile strength using a factor which relates the two strengths.

  4. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  5. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  6. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    A shearing force is applied to the top of the rectangle while the bottom is held in place. The resulting shear stress, τ, deforms the rectangle into a parallelogram. The area involved would be the top of the parallelogram. Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section.

  7. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    Historically a beam is a squared timber, but may also be made of metal, stone, or a combination of wood and metal [1] such as a flitch beam.Beams primarily carry vertical gravitational forces, but they are also used to carry horizontal loads such as those due to earthquake or wind, or in tension to resist rafter thrust or compression (collar beam).

  8. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Maximum shear stress theory postulates that failure will occur if the magnitude of the maximum shear stress in the part exceeds the shear strength of the material determined from uniaxial testing. Maximum normal stress theory postulates that failure will occur if the maximum normal stress in the part exceeds the ultimate tensile stress of the ...

  9. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    The beam is initially straight with a cross section that is constant throughout the beam length. The beam has an axis of symmetry in the plane of bending. The proportions of the beam are such that it would fail by bending rather than by crushing, wrinkling or sideways buckling. Cross-sections of the beam remain plane during bending.