Search results
Results from the WOW.Com Content Network
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
Each chemical element has a unique atomic number (Z— for "Zahl", German for "number") representing the number of protons in its nucleus. [4] Each distinct atomic number therefore corresponds to a class of atom: these classes are called the chemical elements. [5] The chemical elements are what the periodic table classifies and organizes.
Nonmetals show more variability in their properties than do metals. [1] Metalloids are included here since they behave predominately as chemically weak nonmetals.. Physically, they nearly all exist as diatomic or monatomic gases, or polyatomic solids having more substantial (open-packed) forms and relatively small atomic radii, unlike metals, which are nearly all solid and close-packed, and ...
In 1802 the term "metalloids" was introduced for elements with the physical properties of metals but the chemical properties of non-metals. [194] However, in 1811, the Swedish chemist Berzelius used the term "metalloids" [195] to describe all nonmetallic elements, noting their ability to form negatively charged ions with oxygen in aqueous ...
Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [1]
A different chemistry-based approach advocates replacing the term "heavy metal" with two groups of metals and a gray area. Class A metal ions prefer oxygen donors; class B ions prefer nitrogen or sulfur donors; and borderline or ambivalent ions show either class A or B characteristics, depending on the circumstances. [32]
The location and therefore usefulness of the line is debated. It cuts through the metalloids, elements that share properties between metals and nonmetals, in an arbitrary manner, since the transition between metallic and non-metallic properties among these elements is gradual.
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.