Search results
Results from the WOW.Com Content Network
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits , monolithic microwave integrated circuits , infrared light-emitting diodes , laser diodes , solar cells and optical windows.
Compounds containing Ga–Ga bonds are true gallium(II) compounds, such as GaS (which can be formulated as Ga 2 4+ (S 2−) 2) and the dioxan complex Ga 2 Cl 4 (C 4 H 8 O 2) 2. [1] There are also compounds of gallium with negative oxidation states, ranging from -5 to -1, most of these compounds being magnesium gallides (Mg x Ga y).
Arsenic is used as the group 15 element in the III-V semiconductors gallium arsenide, indium arsenide, and aluminium arsenide. [10] The valence electron count of GaAs is the same as a pair of Si atoms, but the band structure is completely different which results in distinct bulk properties. [11]
These compounds are mainly of academic interest. For example, "sodium arsenide" is a structural motif adopted by many compounds with the A 3 B stoichiometry. Indicative of their salt-like properties, hydrolysis of alkali metal arsenides gives arsine: Na 3 As + 3 H 2 O → AsH 3 + 3 NaOH Nickel arsenide is a common impurity in ores of nickel.
The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.
Since metals can display multiple oxidation numbers, the exact definition of how many "valence electrons" an element should have in elemental form is somewhat arbitrary, but the following table lists the free electron densities given in Ashcroft and Mermin, which were calculated using the formula above based on reasonable assumptions about ...
Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy (chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are group III elements of the periodic table while arsenic is a group V element. Alloys made of these chemical groups are referred to as "III-V ...
Organogallium compounds can be synthesized by transmetallation, for example the reaction of gallium metal with dimethylmercury: 2Ga + 3Me 2 Hg → 2Me 3 Ga + 3 Hg. or via organolithium compounds or Grignards: GaCl 3 + 3MeMgBr → Me 3 Ga + 3MgBrCl. The electron-deficient nature of gallium can be removed by complex formation, for example