Search results
Results from the WOW.Com Content Network
In liquids it usually decreases with increasing temperature, whereas, in most gases, viscosity increases with increasing temperature. This article discusses several models of this dependence, ranging from rigorous first-principles calculations for monatomic gases , to empirical correlations for liquids.
Because of this, the dynamic viscosities of liquids are typically much larger than those of gases. In addition, viscosity tends to increase with temperature in gases and decrease with temperature in liquids. Above the liquid-gas critical point, the liquid and gas phases are replaced by a single supercritical phase. In this regime, the ...
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The kinetic theory of gases uses their collisions with each other and with the walls of their container to explain the relationship between the macroscopic properties of gases, such as volume, pressure, and temperature, as well as transport properties such as viscosity, thermal conductivity and mass diffusivity.
The gas viscosity model of Chung et alios (1988) [5] is combination of the Chapman–Enskog(1964) kinetic theory of viscosity for dilute gases and the empirical expression of Neufeld et alios (1972) [6] for the reduced collision integral, but expanded empirical to handle polyatomic, polar and hydrogen bonding fluids over a wide temperature ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
the fluid is assumed to be isotropic, as with gases and simple liquids, and consequently is an isotropic tensor; furthermore, since the deviatoric stress tensor is symmetric, by Helmholtz decomposition it can be expressed in terms of two scalar Lamé parameters, the second viscosity and the dynamic viscosity, as it is usual in linear elasticity:
The Vogel–Fulcher–Tammann equation, also known as Vogel–Fulcher–Tammann–Hesse equation or Vogel–Fulcher equation (abbreviated: VFT equation), is used to describe the viscosity of liquids as a function of temperature, and especially its strongly temperature dependent variation in the supercooled regime, upon approaching the glass transition.