Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.
Simple harmonic motion can serve as a mathematical model for a variety of motions, but is typified by the oscillation of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single resonant frequency.
Hooke's law gives the relationship of the force exerted by the spring when the spring is compressed or stretched a certain length: = (), where F is the force, k is the spring constant, and x is the displacement of the mass with respect to the equilibrium position. The minus sign in the equation indicates that the force exerted by the spring ...
In simple harmonic motion of a spring-mass system, energy will fluctuate between kinetic energy and potential energy, but the total energy of the system remains the same. A spring that obeys Hooke's Law with spring constant k will have a total system energy E of: [14] = ()
A coil of wire attached to the pointer twists in a magnetic field against the resistance of a torsion spring. Hooke's law ensures that the angle of the pointer is proportional to the current. A DMD or digital micromirror device chip is at the heart of many video projectors. It uses hundreds of thousands of tiny mirrors on tiny torsion springs ...
A spring scale. A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale.It consists of a spring fixed at one end with a hook to attach an object at the other. [1]