Search results
Results from the WOW.Com Content Network
The proportionality factor is the dynamic viscosity of the fluid, often simply referred to as the viscosity. It is denoted by the Greek letter mu ( μ ). The dynamic viscosity has the dimensions ( m a s s / l e n g t h ) / t i m e {\displaystyle \mathrm {(mass/length)/time} } , therefore resulting in the SI units and the derived units :
(dynamic) viscosity (also ) pascal second (Pa⋅s) theta: angular displacement: radian (rad) kappa: torsion coefficient also called torsion constant newton meter per radian (N⋅m/rad) lambda: cosmological constant: per second squared (s −2)
The poise (symbol P; / p ɔɪ z, p w ɑː z /) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). [1] It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = 0.01 P) is more commonly used than the poise itself.
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.
Common symbols are , ′,, or . It has dimensions (mass / (length × time)), and the corresponding SI unit is the pascal -second (Pa·s). Like other material properties (e.g. density , shear viscosity , and thermal conductivity ) the value of volume viscosity is specific to each fluid and depends additionally on the fluid state, particularly ...
μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m −1 s −1); R is the radius of the spherical object (meters); is the flow velocity relative to the object (meters per second). Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.